
System Administrators Manual (SAM)
Crack Version 1.0.0.2 for HP-UX 10.20

9 May 1997

1. Scope

1.1 Identification

This System Administrators Manual (SAM) is for Crack, Segment directory name CRACK,
Version 1.0.0.2. This release is for the HP-UX 10.20 platform.

1.2 System Overview

This version of Crack is a freely available program designed to find standard Unix eight-
character DES encrypted passwords by standard guessing techniques. It is written to be flexible,
configurable and fast, and to be able to make use of several networked hosts via the Berkeley rsh
program (or similar), where possible.

System configuration variables and command line options can be found in Appendix A of this
document.

2. Referenced Documents

Installation Procedures (IP) for Crack Version 1.0.0.2, 9 May 1997

3. Operating Guidelines

The default behavior of this software is to run in the foreground of your system when the Icon is
used to launch the application.

A detailed explanation of possible variable changes is described in “Section 7. Installation” in
Appendix A.

The configuration variables and command line options can be found in Appendix A.

The format of the command line options must be added at the root prompt like the examples
below:
/h/COE/Comp/CRACK/bin/crack/Crack [options] [bindir] /etc/passwd [...other passwd files]
or
/h/COE/Comp/CRACK/bin/crack/Crack -network [options] /etc/passwd [...other passwd files]

Where bindir is the optional name of the directory where you want the binaries installed.

4. Installation Overview

This version of Crack can be installed in accordance with the Installation Procedures (IP) for
Crack Version 1.0.0.2, 9 May 1997.

5. Operation/Maintenance Procedures

None.

6. Error Recovery Guidelines

To shutdown Crack, type <Ctrl> ‘C’ which will stop the application. Or type ps -ef at the root
prompt in another xterm window to list all of the current processes. Locate the Crack process
and its process number. Once you have located that number, execute the following:

kill -9 <process number>
This will immediately kill the Crack process.

To restart Crack, either double click the Crack Icon or type at the root prompt:

/h/COE/Comp/CRACK/bin/crack/Crack [options] [bindir] /etc/passwd [...other passwd files]
or
/h/COE/Comp/CRACK/bin/crack/Crack -network [options] /etc/passwd [...other passwd files]

Appendix A. Courtney Docs/readme.txt file

(*Note, the references to Version 4.1 (or any other two digit version number) in this Appendix
refer to the author’s version numbers. The COE Version number is 1.0.0.2*)

"Crack Version 4.1"
 A Sensible Password Checker for Unix

 Alec D.E. Muffett

 Unix Software Engineer
 Aberystwyth, Wales, UK

 (aem@aber.ac.uk or alec_muffett@hicom.lut.ac.uk)

ABSTRACT

 Crack is a freely available program designed
to find standard Unix eight-character DES

"readme.txt" [Read only] 852 lines, 30990 characters
 encrypted passwords by standard guessing tech-
 niques outlined below. It is written to be flexi-

ble, configurable and fast, and to be able to make
 use of several networked hosts via the Berkeley

 rsh program (or similar), where possible.

1. Statement of Intent

This package is meant as a proving device to aid the con-
struction of secure computer systems. Users of Crack are
advised that they may get severely hassled by authoritarian

type sysadmin dudes if they run Crack without proper authorization.

2. Introduction to Version 4.0

Crack is now into it's fourth version, and has been reworked
extensively to provide extra functionality, and the purpose
of this release is to consolidate as much of this new func-
tionality into as small a package as possible. To this end,

Crack may appear to be less configurable: it has been writ-
ten on the assumption that you run a fairly modern Unix, one

with BSD functionality, and then patched in
order to run on other systems.

This, surprisingly enough, has led to neater code, and has
made possible the introduction of greater flexibility which
supersedes many of the options that could be configured in

earlier versions of Crack. In the same vein, some of the
older options are now mandatory. These, such as feedback

mode and CRACK_PRINTOUT are no longer supported as options
and probably never will be again. There is just a lot of

wastage in not running with them, and too many dependencies
in other functions to bother programming around them.

The user interface is basically identical to the previous
versions, although some people have asked about providing
X-windows GUI’s to Crack, I think it would be a waste of

time to do so. Crack has far less options than your ordinary
version of /bin/ls.

3. Introduction to Version 4.1

Version 4.1 of the Crack program is an attempt to extend the
features introduced in v4.0 and provide hooks for external
libraries such as Michael Glad’s wonderful UFC crypt()

implementation, which (on some platforms) can outperform my
fcrypt() by a factor of 3. I have also been burdened with

the task of making Crack’s memory handling bombproof (hah!)
in the vague hope that it will survive running out of memory

on small machines.[1]

The extensions that I mention above regard the addition of
extra primitives to the dictionary processing language which
permit the production of more concise dictionaries contain-
ing words, more of which are likely to be passwords. The

idea is to gain efficiency by removing some of the dross
from the generated dictionaries.

Crack should (generally) be more disk-space efficient now
that the program can spot dictionaries which have been

compressed using compress or pack and will uncompress them
on the fly as necessary (using zcat or pcat respectively).[2]

4. Crack Methodology - Part 1: Internals

Crack takes as its input a series of password files and

source dictionaries. It merges the dictionaries, turns the
password files into a sorted list, and generates lists of

possible passwords from the merged dictionary or from infor-
mation gleaned about users from the password file. It does

not attempt to remedy the problem of allowing users to have
guessable passwords, and it should NOT be used in place of
getting a really good, secure passwd program replacement.[3]

The above paragraphs define the purpose of Crack, and embody
a great deal of hard work, screams of Eureka!, drunkenness,

and a fair amount of swearing too. There is a lot of think-
ing, philosophy, and empirical guesswork behind the way that

Crack attacks password files, and although it is not perfect, I certainly hope
 that Crack will out-do most of it’s competitors.

Crack works by making many individual passes over the pass-
word entries that you supply to it. Each pass generates

password guesses based upon a sequence of rules, supplied to
the program by the user. The rules are specified in a

simplistic language in the files gecos.rules and
dicts.rules, to be found in the Scripts directory. The dis-
tinction between these two files will be made clear later.

The rules are written as a simple string of characters, with
one rule to a line. Blank lines, and comment lines begin-
ning with a hash character # are ignored. Trailing white-

space is also ignored. The instructions in the rule are
followed from left to right, and are applied to the dictionary
 words one by one, as the words are loaded. Some simple
pattern matching primitives are provided for selection pur-
poses, so that if the dictionary word does not match the

pattern, it is ignored. This saves on time and memory.
Before carrying on, I suggest that you browse through

 Scripts/dicts.rules, take a look at the rules supplied as
defaults, and try to work out what they do.

The rules are stored in two different files for two dif-
ferent purposes. Rules in Scripts/gecos.rules are applied

to data generated by Crack from the pw_gecos and pw_gecos
entries of the user’s password entry. The data fed to the

gecos rules for the user aem, who is Alec David Muffett,
Systems would be: aem, Alec, David, Muffett, Systems, and a

series of permutations of those words, either re-ordering
the words and joining them together (eg: AlecMuffett), or
making up new words based on initial letters of one word

taken with the rest of another (eg: AMuffett).[4]

The entire set of rules in gecos.rules is applied to each of
these words, which creates many more permutations and combi-

nations, all of which are tested. Hence testing the pass-
word gecos information under Crack v4.0 and upwards takes

somewhat longer than previously, but it is far more
thorough.

After a pass has been made over the data based on gecos
information, Crack makes further passes over the password

data using successive rules from the Scripts/dicts.rules by
loading the whole of Dicts/bigdict file into memory, with
the rule being applied to each word from that file. This

generates a resident dictionary, which is sorted and uniqued
as to prevent wasting time on repetition. After each pass

is completed, the memory used by the resident dictionary is
freed up, and (hopefully) re-used when the next dictionary

is loaded.

The Dicts/bigdict dictionary is created by Crack by merging,
sorting, and uniq’ing the source dictionaries, which are to
be found in the directory DictSrc and which may also be

named in the Crack shellscript, via the $STDDICT variable.
(The default value of $STDDICT is /usr/dict/words).

The file DictSrc/bad_pws.dat is a dictionary which is meant
to provide many of those common but non-dictionary pass-

words, such as 12345678 or qwerty.

If you wish to provide a dictionary of your own, just copy
it into the DictSrc directory (use compress on it if you

wish to save space; Crack will unpack it whilst generating
the big dictionary) and then delete the contents of the

Dicts directory by running Scripts/spotless. Your new dic-
tionary will be merged in on the next run. For more informa-

tion on dictionary attacks, see the excellent paper called
"Foiling the Cracker: A Survey of, and Improvements to,

Password Security" by Daniel Klein, available from
 ftp.sei.cmu.edu in ~/pub/dvk/passwd.*. Also, please read

the APPENDIX file supplied with this distribution.[5]

Having described the method of cracking, perhaps we should
now investigate the algorithm used to overlay the cracking

mechanism.

5. Crack Methodology - Part 2: Feedback Filters

As is stated above, Crack permutes and loads dictionaries
directly into memory, sorts and uniques them, before

attempting to use each of the words as a guess for each
users’ password. If Crack correctly guesses a password, it
marks the user as done and does not waste further time on

trying to break that users password.

Once Crack has finished a dictionary pass, it sweeps the
list of users looking for the passwords it has cracked. It

stores the cracked passwords in both plaintext and encrypted
forms in a feedback file in the directory Runtime. Feedback

files have names of the form Runtime/F*.

The purpose of this is so that, when Crack is next invoked,
it may recognize passwords that it has successfully cracked

before, and filter them from the input to the password
cracker. This provides an instant list of crackable users

who have not changed their passwords since the last time
Crack was run. This list appears in a file with name out* in

the $CRACK_OUT directory, or on stdout, if foreground mode
is invoked (see Options, below).

In a similar vein, when a Crack run terminates normally, it
writes out to the feedback file all encrypted passwords that
it has NOT succeeded in cracking. Crack will then ignore

all of these passwords next time you run it.

Obviously, this is not desirable if you frequently change
your dictionaries or rules, and so there is a script pro-

vided, Scripts/mrgfbk which sorts your feedback files,
merges them into one, and optionally removes all traces of
’uncrackable’ passwords, so that your next Crack run can
have a go at passwords it has not succeeded in breaking

before.

Mrgfbk is invoked automatically if you run Scripts/spotless.

6. Crack Methodology - Part 3: Execution and Networking

Each time Crack is invoked, whether networked or not, it
generates a diefile with a name of the form Runtime/D* (for
network cracks, this file is generated by RCrack, and is of

 the form Runtime/DR* which points to a real diefile, named

Runtime/RD* - see below for details).

These diefiles contain debugging information about the job,
and are generated so that all the jobs on the entire network
can be called quickly by invoking Scripts/plaster. Diefiles

delete themselves after they have been run.

As you will read in the sections below, Crack has a -network
option: This is designed to be a simple method of

automatically spreading the load of password cracking out
over several machines on a network, preferably if they are

 connected by some form of networked filestore.

When Crack -network is invoked, it filters its input in the
ordinary way, and then splits its load up amongst several

machines which are specified in the file
Scripts/network.conf.

This file contains a series of hostnames, power ratings,
flags, etc, relevant to the running of Crack on each

machine. Crack then calls Scripts/CRACK to use the rsh
command (or similar) to invoke Crack on the other hosts.

See the CRACK script, and the example network.conf file for
details.

7. Installation

Crack is one of those most unusual of beasties, a self-
installing program. Some people have complained about this
apparent weirdness, but it has grown up with Crack ever
since the earliest network version, when I could not be

bothered to log into several different machines with several
different architectures, just in order to build the

binaries. Once the necessary configuration options have been
set, the executables are created via make by running the

 Crack shellscript.

Crack’s configuration lies in two files, the Crack shell
script, which contains all the installation specific configuration

 data, and the file Sources/conf.h, which contains
configuration options specific to various binary platforms.

In the Crack shellscript, you will have to edit the
CRACK_HOME variable to the correct value. This variable

should be set to an absolute path name (names relative to

~username are OK, so long as you have some sort of csh)
through which the directory containing Crack may be accessed

on ALL the machines that Crack will be run on. There is a
similar variable CRACK_OUT which specifies where Crack

should put its output files - by default, this is the same
as $CRACK_HOME.

You will also have to edit the file Sources/conf.h and work
out which switches to enable. Each #define has a small note
explaining its purpose. Where I have been in doubt about

the portability of certain library functions, usually I have
re-written it, so you should be OK. Let me know of your

problems, if you have any.

If you will be using Crack -network you will then have to
generate a Scripts/network.conf file. This contains a list
of hostnames to rsh to, what their binary type is (useful

when running a network Crack on several different
architectures), a guesstimate of their relative power (take

your slowest machine as unary, and measure all others rela-
tive to it), and a list of per-host flags to add to those

specified on the Crack command line, when calling that host.
There is an example of such a file provided in the Scripts

directory - take a look at it.

 If ever you wish to specify a more precise figure as to the
relative power of your machines, or you are simply at a

loss, play with the command make tests in the source code
directory. This can provide you with the number of

fcrypt()s that your machine can do per second, which is a
number that you can plug into your network.conf as a measure

of your machines’ power (after rounding the value to an integer).

8. Usage

Okay, so, let’s assume that you have edited your Crack
script, and your Sources/conf.h file, where do you go from

here ?

Crack [options] [bindir] /etc/passwd [...other passwd files]

Crack -network [options] /etc/passwd [...other passwd files]

Where bindir is the optional name of the directory where you

want the binaries installed. This is useful where you want
to be able to run versions of Crack on several different

architectures. If bindir does not exist, a warning will be
issued, and the directory created.

 Note: bindir defaults to the name generic if not supplied.

Notes for Yellow Pages (NIS) Users: I have occasional
queries about how to get Crack running from a YP password

file. There are several methods, but by far the simplest is
to generate a passwd format file by running:-

 ypcat passwd > passwd.yp

and then running Crack on this file.

9. Options

-f Runs Crack in foreground mode, ie: the password cracker
 is not backgrounded, and messages appear on stdout and

 stderr as you would expect. This option is only really
 useful for very small password files, or when you want

 to put a wrapper script around Crack.

 Foreground mode is disabled if you try running Crack
 -network -f on the command line, because of the insen-
 sibility of rshing to several machines in turn, waiting
 for each one to finish before calling the next. How-

 ever, please read the section about Network Cracking
 without NFS/RFS, below.

-v Sets verbose mode, whereby Crack will print every guess
 it is trying on a per-user basis. This is a very quick

 way of flooding your filestore, but useful if you think
 something is going wrong.

-m Sends mail to any user whose password you crack by
 invoking Scripts/nastygram with their username as an

argument. The reason for using the script is so that a
 degree of flexibility in the format of the mail message
 is supplied; ie: you don’t have to recompile code in

 order to change the message.[6]

-nvalue Sets the process to be nice()ed to value, so, for exam-
 ple, the switch -n19 sets the Crack process to run at

 the lowest priority.

-network Throws Crack into network mode, in which it reads the
 Scripts/network.conf file, splits its input into chunks

 which are sized according to the power of the target
 machine, and calls rsh to run Crack on that machine.

 Options for Crack running on the target machine may be
 supplied on the command line (eg: verbose or recover
 mode), or in the network.conf file if they pertain to

 specific hosts (eg: nice() values).

-r<pointfile> This is only for use when running in recover mode.
 When a running Crack starts pass 2, it periodically

 saves its state in a pointfile, with a name of the form
 Runtime/P.* This file can be used to recover where you
 were should a host crash. Simply invoke Crack in
 exactly the same manner as the last time, with the

 addition of the -r switch, (eg: -rRuntime/Pfred12345)
 switch. Crack will startup and read the file, and jump

 to roughly where it left off. If you are cracking a
 very large password file, this can save oodles of time

 after a crash.

 If you were running a network Crack, then the jobs will
 again be spawned onto all the machines of the original
 Crack. The program will then check that the host it is

 running on is the same as is mentioned in the
 pointfile. If it is not, it will quietly die. Thus,

 assuming that you supply the same input data and do not
 change your network.conf file, Crack should pick up

 where it left off. This is a bit inelegant, but it’s
 better than nothing at the moment.

 The method of error recovery outlined above causes
 headaches for users who want to do multiprocessing on

 parallel architectures. Crack is in no way parallel,
 and because of the way it’s structured (reading stdin
 from shellscript frontends) it is a pain to divide the

 work amongst several processes via fork()ing.

 The hack solution to get several copies of Crack run-
 ning on one machine with n processors at the moment is

 to insert n copies of the entry for your parallel
 machine into the Scripts/network.conf file. If you use
 the -r option in these circumstances however, you will

 get n copies of the recovered process running, only one
 of them will have the correct input data.

 The old solution to this problem (see old documentation
 if you are interested) has been negated by the intro-

 duction of feedback mode, so the best bet in this par-
 ticular situation is to wait until the other jobs are

 done (and have written out lists of uncrackable pass-
 words), and then re-start the jobs from scratch. Any-
 one whose password was not cracked on the first run

 will be ignored on the second, if they have not changed
 it since. This is inelegant, but it’s the best I can

 do in the limited time available.

10. Support Scripts

The Scripts directory contains a small number of support and
utility scripts, some of which are designed to help Crack

 users check their progress. Briefly, the most useful ones
are:-

Scripts/shadmrg This is a small (but hopefully readable) script for
 merging /etc/passwd and /etc/shadow on System V style
 shadow password systems. It produces the merged data

 to stdout, and will need redirecting into a file before
 Crack can work on it. The script is meant to be fairly
 lucid, on the grounds that I worry that there are many

 shadowing schemes out there, and perhaps not all have
 the same data format.

 I have not wired this facility into the Crack command
 itself because the world does NOT revolve around System
 V yet, regardless of what some people would have me

 believe, and I believe that the lack of direct support
 for NIS outlined above, sets a precedent. There are

 just too many incompatibilities in shadow password
 schemes for me to hardwire anything.

Scripts/plaster which is named after a dumb joke, but is a simple fron-
 tend to the Runtime/D* diefiles that each copy of the

 password cracker generates. Invoking Scripts/plaster
 will kill off all copies of the password cracker you

 are running, over the network or otherwise.

Scripts/status This script rshes to each machine mentioned in the

 Scripts/network.conf file, and provides some informa-
 tion about processes and uptime on that machine. This
 is useful when you want to find out just how well your

 password crackers are getting on during a Crack -network.

Scripts/{clean,spotless} These are really just frontends to a makefile. Invoking
 Scripts/clean tidies up the Crack home directory, and

 removes probably unwanted files, but leaves the pre-
 processed dictionary bigdict intact. Scripts/spotless
 does the same as Scripts/clean but obliterates bigdict

 and old output files too, and compresses the feedback
 files into one.

Scripts/nastygram This is the shellscript that is invoked by the password
 cracker to send mail to users who have guessable pass-

 words, if the -m option is used. Edit it at your lei-
 sure to suit your system.

Scripts/guess2fbk This script takes your out* files as arguments and
 reformats the ’Guessed’ lines into a slightly messy

 feedback file, suitable for storing with the others.

 An occasion where this might be useful is when your
 cracker has guessed many peoples passwords, and then

 died for some reason (a crash?) before writing out the
 guesses to a feedback file. Running

 Scripts/guess2fbk out* >> Runtime/F.new
 will save the work that has been done.

11. Network Cracking without NFS/RFS

For those users who have some form of rsh command, but do
not have a networked filestore running between hosts,

there is now a solution which will allow you to do networked
cracking, proposed to me by Brian Tompsett at Hull. Person-

 ally, I consider the idea to be potty, but it fills in miss-
ing functionality in a wonderfully tacky manner.

From the documentation above, you will note that Crack will
undo the -f (output in foreground) option, if it is invoked

with the -network switch at the same time (see the Options
section above). This is true, but it does not apply if you

specify -f option in the network.conf file.

The practical upshot of doing this is that remote copies of
Crack can be made to read from stdin and write to stdout

over a network link, and thus remote processing is accom-
plished. I have tweaked Crack in such a way, therefore,
that if the -f option is specified amongst the crack-flags
of a host in the network.conf, rather than backgrounding

itself on the remote host, the rsh command on the server is
backgrounded, and output is written directly to the files on

the server’s filestore.

There are restrictions upon this method, mostly involving
the number of processes that a user may run on the server at

any one time, and that you will have to collect feedback
output together manually (dropping it into the Runtime
directory on the server). However, it works. Also, if you

 try to use rsh as another user, you will suffer problems if
rsh insists on reading something from your terminal (eg: a
password for the remote account). Also, recovering using
checkpointing goes out the window unless you specify the
name of the pointfile as it is named on the remote machine.

12. UFC Support and notes on fast crypt() implementations

The stdlib version of the crypt() subroutine is incredibly
slow. It is a massive bottleneck to the execution of Crack
and on typical platforms that you get at universities, it is

rare to find a machine which will achieve more than 50 stan-
dard crypt() s per second. On low-end diskless worksta-

tions, you may expect 2 or 3 per second. It was this slow-
ness of the crypt() algorithm which originally supplied much

of the security Unix needed.[7]

There are now many implementations of faster versions of
crypt() to be found on the network. The one supplied with
Crack v3.2 and upwards is called fcrypt(). It was origi-

nally written in May 1986 by Robert Baldwin at MIT, and is a
good version of the crypt() subroutine. I received a copy

from Icarus Sparry at Bath University, who had made a couple
of portability enhancements to the code.

I rewrote most of the tables and the KeySchedule generating
algorithm in the original fdes-init.c to knock 40% off the
execution overhead of fcrypt() in the form that it was

shipped to me. I inlined a bunch of stuff, put it into a
single file, got some advice from Matt Bishop and Bob

Baldwin [both of whom I am greatly indebted to] about what
to do to the xform() routine and to the fcrypt function

itself, and tidied up some algorithms. I have also added
more lookup tables and reduced several formula for faster

use. Fcrypt() is now barely recognisable as being based on
its former incarnation, and it is 3x faster.

On a DecStation 5000/200, fcrypt() is about 16 times faster
than the standard crypt (your mileage may vary with other
architectures and compilers). This speed puts fcrypt() into

the "moderately fast" league of crypt implementations.

Amongst other crypt implementations available is UFC by
Michael Glad. UFC-crypt is a version of the crypt subrou-

tine which is optimised for machines with 32-bit long
integers and generally outperforms my fcrypt() by a factor
of between 1 and 3, for a tradeoff of large memory usage,

and memory-cache unfriendliness. Hooks for even more optim-
ised assembler versions of crypt() are also provided for

some platforms (Sun, HP, ...). Getting UFC to work on 16
bit architectures is nearly impossible.

However, on most architectures, UFC generates a stunning
increase in the power of Crack, and so, from v4.1 onwards,
Crack is written to automatically make use of UFC if it can

find it. All that you have to do is to obtain a suitable
copy of UFC (preferably a version which mentions that it is
compatible with Crack v4.1, and unpack it into a directory

called ufc-crypt in $CRACK_HOME, and then delete your old
binaries. UFC will then be detected, compiled, tested and

used in preference to fcrypt() by the Crack program, wher-
ever possible.

13. Conclusions

What can be done about brute force attacks on your password
file ?

You must get a drop-in replacement for the passwd and
yppasswd commands; one which will stop people from choosing

bad passwords in the first place. There are several
programs to do this; Matt Bishop’s passwd+ and Clyde

Hoover’s npasswd program are good examples which are freely
available. Consult an Archie database for more details on

where you can get them from.

It would be nice if an organisations (such as CERT?) could be
persuaded to supply skeletons of sensible passwd commands

for the public good, as well as an archive of security
related utilities[8] on top of the excellent COPS. However,
for Unix security to improve on a global scale, we will also
require pressure on the vendors, so that programs are writ-

ten correctly from the beginning.

 [1] - or even on large ones. Brian Tompsett at Hull
tweaked Crack v3.3 until it could run to completion

after filling the swapspace on each of a network of
SparcStation2’s. Due to restructuring work on v4.0, I

have had to write my own sorting algorithm & re-
implement all of his tweaks from scratch, and can only
hope that I have emulated the bombproofness of this

desirable (?) functionality.
 [2] Note to people who are short on memory or swap:
do remember that to do this Crack will have to fork()
(via popen()) and might not be able to create the un-

compressing process. Hence, if you intend to swaplock
your machine, don’t compress the dictionaries. Switch

this off by editing the Crack shellscript.
 [3] See the end of ths document for more information

about passwd replacements.
 [4] - and ASystems and DSystems, and MSystems, etc...

because Crack does not differentiate. Hence, care
should be taken to check for redundancy when adding new

rules, so as not to waste time during the gecos pass.
 [5] Extra dictionaries (those detailed in Dan Klein’s

paper) can be obtained via anonymous FTP from
ftp.uu.net (137.39.1.9) as ~/pub/dictionaries.tar.Z; or

check an Archie database for other possible sources of
dictionaries.

 [6] I’m uncertain about the wisdom of mailing someone
like this. If someone browses your cracked user’s mail

somehow, it’s like a great big neon sign pointing at
the user saying "This Is A Crackable Account - Go For

It!". Not to mention the false sense of security it
engenders in the System Manager that he’s "informed"

the user to change his password. What if the user
doesn’t log on for 3 months? However, so many people
have wired it into their own versions of Crack, I sup-

pose it must be provided... AEM
<1b>9

 [7] See: "Password Security, A Case History" by Bob
Morris & Ken Thomson, in the Unix Programmer Docs.

 [8] COPS is available for anonymous FTP from
cert.sei.cmu.edu (128.237.253.5) in ~/cops

